

Rajesh Madusudanan

7th EMship cycle: October 2016 – February 2018

Master Thesis

Ballast Water Treatment Systems: Type Approval, Certification, Comparison and Retrofitting Ship

Supervisor: Prof. Zbigniew Sekulski, West Pomeranian University of Technology, Szczecin, Poland Internship tutor: Mr. Andrzej Sobieraj, Westcon Design Poland, Szczecin, Poland Reviewer: Prof. André Hage, University of Liege, Liege, Belgium

La Spezia, February 2018

Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

CONTENTS

- 1. Westcon Design Poland & OMCS Class
- 2. Introduction
- 3. IMO Regulations for Ballast Water Management
- 4. USCG Regulations for Ballast Water Management
- 5. Comparison between IMO & USCG Regulations
- 6. Ballast Water Treatment Technologies
- 7. Sediments Management
- 8. Retrofitting Ship
- 9. Ballast Water Compliance Monitoring
- 10. Conclusions
- 11. Recommendations
- 12. Future Prospects

1. Westcon Design Poland, Szczecin (Internship)

Preparation of technical documentation for all design stages

- New buildings
- Existing vessels: conversions, retrofits, upgrades
- Offshore vessels/Platforms

Overseas Marine Certification Services - OMCS Class, Panama

- Recognized Org. + Recognized Security Org. Panama Maritime Administration
- Services: Ship Classification, Statutory Certification, Verification & Consultancy
- Recognized by 13 flag states
- Head office: Panama, Regional Offices: Dubai, Shanghai, Canary Islands

2. INTRODUCTION

Objective and Scope

- study about IMO and USCG regulations for ballast water management, salient features, type approval procedures and comparison
- brief description and comparison between most widely used treatment methods, alternate and innovative solutions, important factors for the selection and installation of an appropriate treatment system
- case study retrofitting ship
- comparison and analysis at various stages and conclusions are drawn, recommendations to various stakeholders, future prospects
- Scope limited to available data from the associated industry

3. IMO REGULATIONS FOR BALLAST WATER MANAGEMENT

Key Requirements

- Ballast Water Management Plan (BWMP)
- Ballast Water Record Book (BWRB)
- International Ballast Water Management Certificate (IBWMC)

D1 Ballast Water Exchange Standard

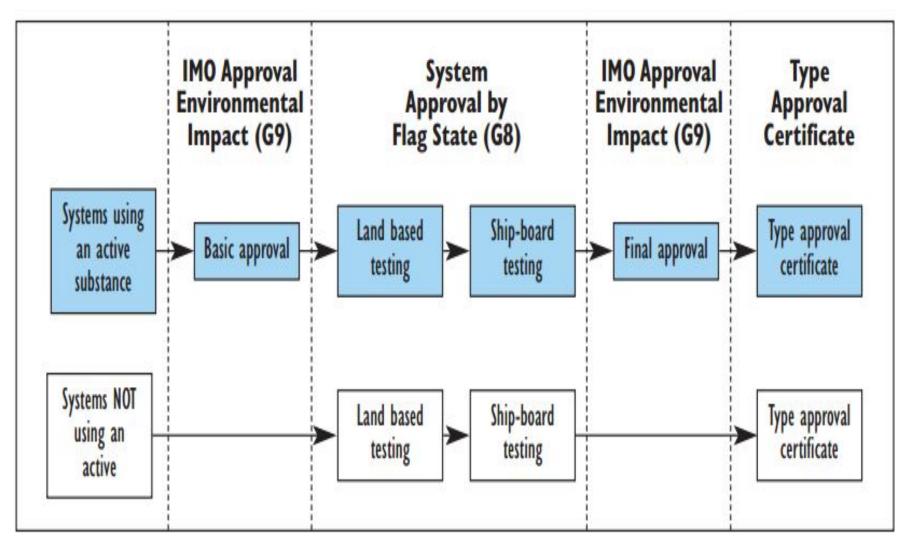
• Atleast 95% of volumetric exchange or if using the pumping through methods, three times the volume of each tank

D2 Ballast Water Performance Standard

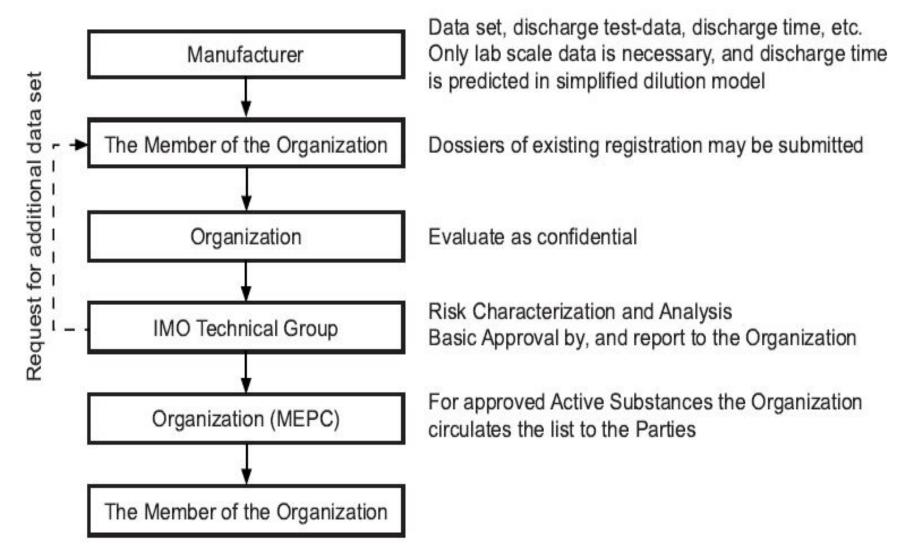
- Viable Organism (Plankton) ≥ 50µm: < 10 cells per m3
- Viable Organism (Plankton) 10-50µm: < 10 cells per ml
- Toxicogenic Vibrio Cholera (O1 & O139): < 1 cfu per 100 ml or < 1 cfu per 1g

zooplankton samples

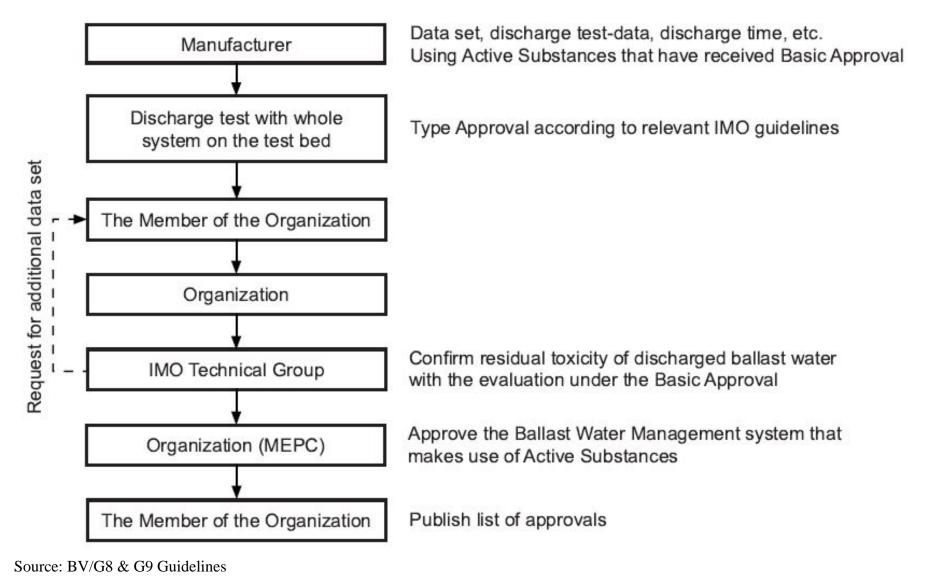
- Escherichia Coli: < 250 cfu per 100 ml
- Intestinal Enterococci: < 100 cfu per 100 ml


Rajesh Maousudanan, 79 EMship cycle: 2016 – 2018

(cfu: colony


Rajesh Madusudanan, 7th EMship cycle: 2016 – 2018

Type Approval

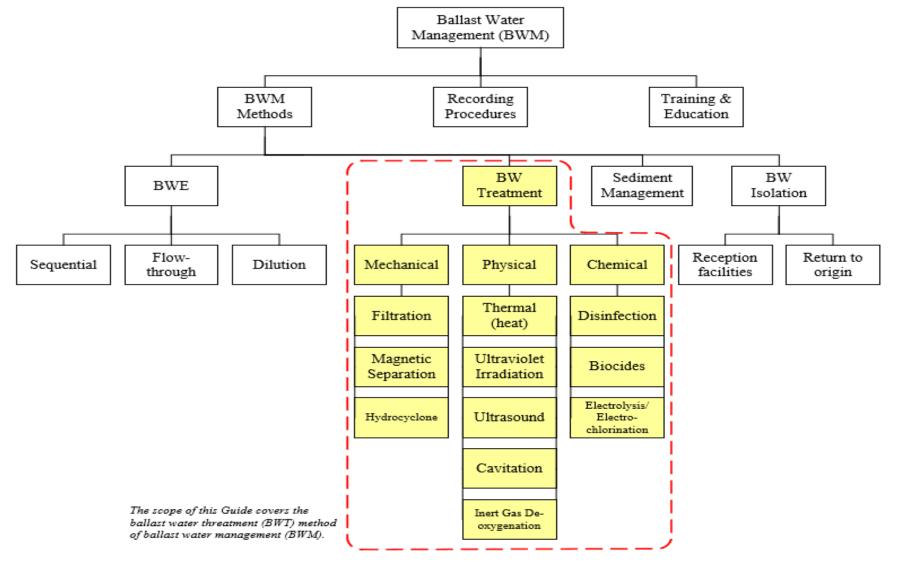

Source: BV/G8 & G9 Guidelines

Basic Approval

Source: BV/G8 & G9 Guidelines

Final Approval

4. USCG REGULATIONS FOR BALLAST WATER MANAGEMENT

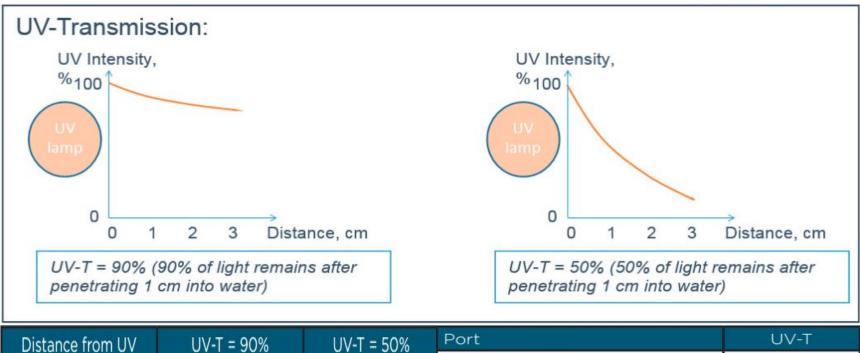

- Key Requirements USCG Approved system, Self-monitoring records, Other accepted methods-Extension from USCG, Alternate Management System (AMS), Uptake from US public water system, Discharge to reception facility, No discharge in US waters as per BWMP
- AMS temporary solution until USCG approval, not equivalent to USCG approval, valid for 5 years
- Compliance Schedule, Exemptions & Extensions
- Approval procedures Letter of Intent, IL, Submission of Application, Evaluation of application, Environmental evaluation, Eligibility for approval, Issue of approval certificate
- Independent Laboratories (IL) & Sub-laboratories
- Approval status 6 systems approved, 2 systems pending (7th Nov 2017)

5. COMPARISON BETWEEN IMO & USCG REGULATIONS

Description	IMO	USCG
Requirements	IMO	Federal & EPA's VGP
Compliance Schedule	Depends on date of construction, IOPP renewal survey date	Depends on BW capacity, date of construction
Certificate requirements	Only one (Flag approval)	USCG approval or AMS
Approval by	Flag (or Class onbehalf of Flag)	USCG
Operator for testing	Manufacturer	L
Laboratory for testing	Any competent lab	Approved ILs only
Observation of testing	Self-observed by lab	Observed by IL
Reporting of results	Manufacturer/Lab	Reported to USCG by IL
Testing methods required	G8/G9 Guidelines	ETV Protocol only
Accepted test method	MPN method accepted	MPN method not accepted
Biofouling & Sediments	Not very stringent	Stringent

Ref: Lloyd's Register

6. BALLAST WATER TREATMENT TECHNOLOGIES


Source: American Bureau of Shipping

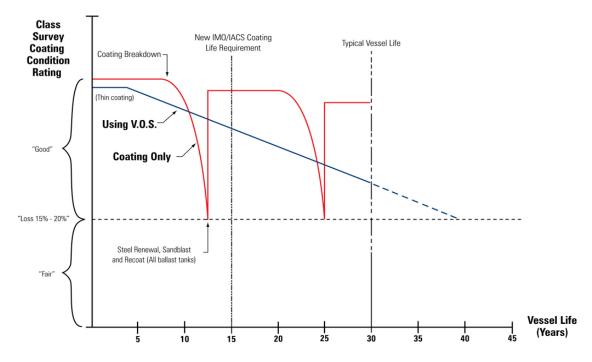
Rajesh Madusudanan, 7th EMship cycle: 2016 – 2018

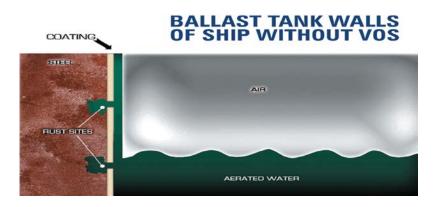
Comparison between UV & Electro-Chlorination

Parameters	UV	Electrochlorination	
Technology	Electrical	Chemical	
No. of sensors	Less	More	
Hazards	Related to Electrical	Related to Chemical	
By-products	No	Yes	
Neutralization	Not required for discharge	Required for discharge	
Capital Expenditure	Lower	Higher	
Suitability	Low volume of ballast water	High volume of ballast waters	
Salinity	Works in all salinity	For fresh water, additional salinity required	
Power Consumption	Disinfection 0.045-0.063 kW per m ³	Disinfection 0.014-0.042 kW per m ³ , Fresh and Cold water treatment ~2-4x Higher	
Chemical costs	CIP (Clean-in-place) or Physical Wiper Cleaning	Neutralization chemicals, Supplement for fresh water treatment	
Cleaning costs	Automatic Lamp Cleaning, Filter Backwash	Hydrochloric Acid Cleaning of Electrode Scaling, Filter Backwash	
Replacement costs	Medium-pressure Lamp Replacement (~3 Yrs)	Electrode Replacement (~5 Year Life)	
Planned Maintenance	Inspection, Lamp Replacement	Inspection, Electrode Replacement	
Unplanned Maintenance	Manual Filter & Lamp Cleaning	Premature Tank Coating & Seal Failure, Manual Filter Cleaning	
Calibration costs	UVI Sensor Calibration	Total Residual Oxidants (TRO), pH, Temperature, Turbidity, Sensor Calibration	
Compliance costs	Discharge Sampling Only	Discharge Sampling + Additional TRO & Disinfection By-product Sampling	
Training costs	New Operator Training	New Operator Training, Chemical Handling & Safety	
Safety costs	No Additional Safety Provisions Required		

Ref: Trojan Marinex

Distance from UV	UV-T = 90%	UV-T = 50%	Port	UV-T
lamp [cm]	UV intensity [%]	UV intensity [%]	Shanghai ⁱ , China	49
icinip [oni]			Vera Cruz, Mexico	94
0	100	100	Houston, USA	74
1	90	50	New Orleans, USA	54
2	01	25	Shanghai ⁱ , China	55
2	81	25	Hong Kong, China	80
3	72.9	12.5	Antwerp, Belgium	66


Source: DESMI Ocean Guard


Disinfection by-products (DBPs) - Chemical disinfection methods + Health impact

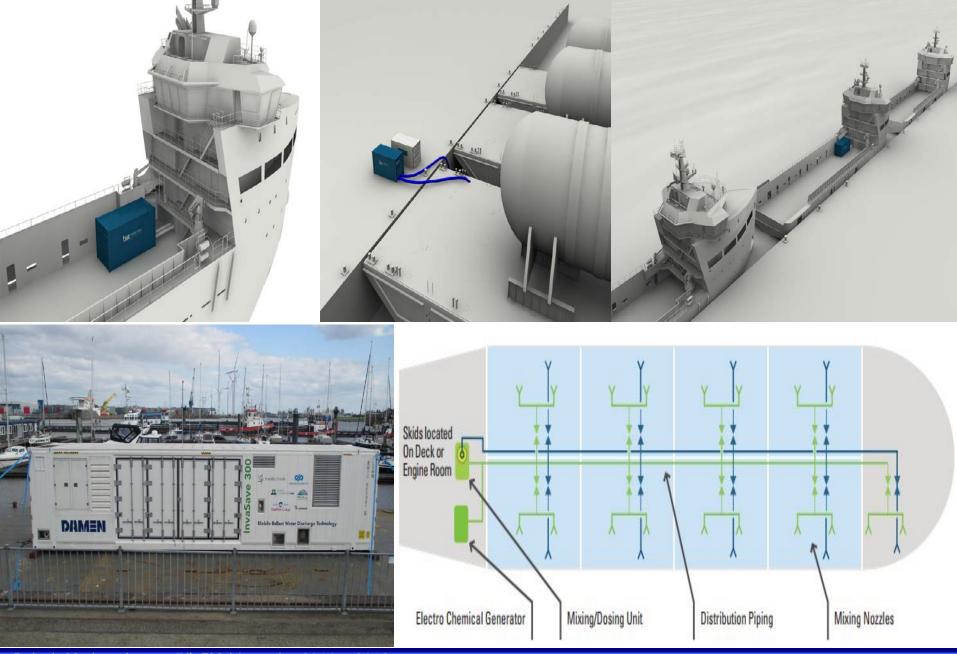
De-oxygenation & Corrosion Effect

VOS™ SGG-5000 Stripping Gas Generator

Rajesh Madusudanan, 7th EMship cycle: 2016 – 2018

Alternate BWMS

(i) *Port reception facilities* - Ballast Water can be received in port through the reception facilities. BWMC, B.3.6 [1] states that the regulations of this convention do not apply to ships which have opted to such facilities.

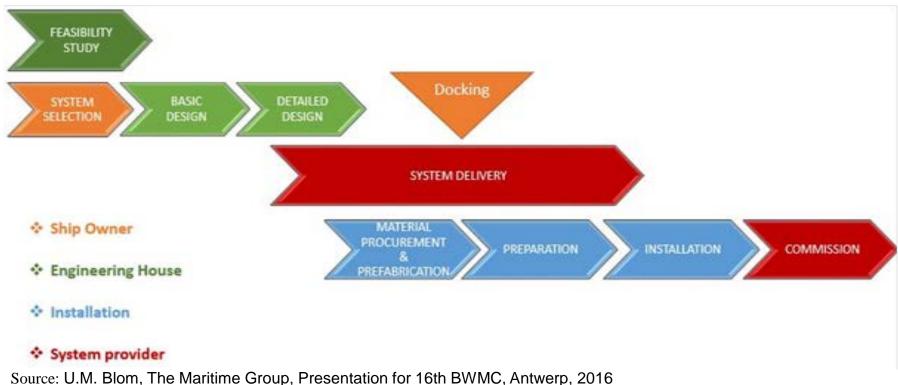

Requirements - Technical Guidelines for Ballast Water Reception Facilities G5 [Resolution MEPC.153(55)]

(ii) No Ballast Ship Concepts (NOBS)

- TU Delft Monomaran Hull
- Det Norske Veritas (formerly DNV) Volume Cargo Ship
- Daewoo Shipbuilding & Marine Engineering (DSME) Solid Ballast Ship
- Ballast free ship concept (SNAME, 2004)

Innovative BWMS

• DAMEN InvaSave, BWC Containers, Envirocleanse inTank system


Rajesh Madusudanan, 7th EMship cycle: 2016 – 2018

Factors for the selection & installation

- Necessity for the BWTS
- Vessel's trading pattern
- Type approval
- Status of type approval
- Limited operating conditions
- System design limitations
- Details of type approval certificate
- Contingency measures
- Treatment capacity
- Treatment mode
- Ship specific factors
- Hazards
- Service network
- Simplicity of the system
- Sampling arrangement
- Verification of biological efficacy
- Additional factors

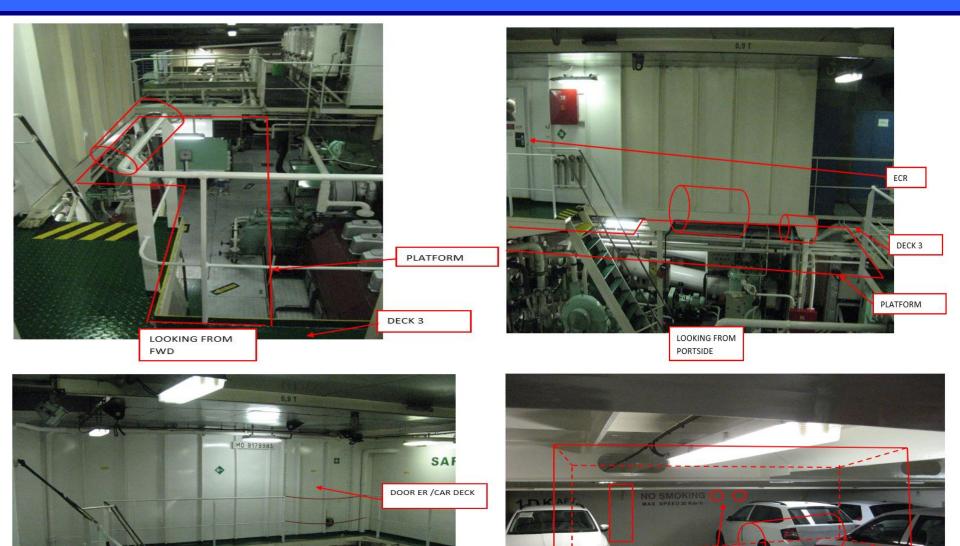
7. SEDIMENTS MANAGEMENT

- Article 5 of IMO's BWMC + Technical Guidelines G1
- Removal and disposal of sediments: at sea or ports/shipyard reception facilities or stored onboard vessels
- Must be removed (ballast tanks) before installing the ballast water treatment system

8. RETROFITTING SHIP

Rajesh Madusudanan, 7th EMship cycle: 2016 – 2018

Ship Particulars


Description	Particulars	
Vessel Name	M.V.Main Highway	
Туре	Vehicles Carrier	
Flag	Cyprus	
Owner/Manager	Stargate Ship Management GmbH	
Scheduled Dry-docking Yard	MSR Gryfia, Szczecin	
Design for BWTS Installation	Westcon Design Poland	
Length Overall	100 m	
Breadth	20 m	
Year Built	1998	
GT	9233	
DWT	3347	
Bilge, Ballast & Fire Pumps (2 No.'s)	200/130 m ³ /h - 4.3/5.2 bar	
Stripping Bilge, Ballast & Fire Pump (1 No.), Piston type	50 m ³ /h – 6.0 bar	

Price of selected systems

120600
103800
87000
152900

Rajesh Madusudanan, 7th EMship cycle: 2016 – 2018

Rajesh Madusudanan, 7th EMship cycle: 2016 – 2018

PIC FROM SB SIDE

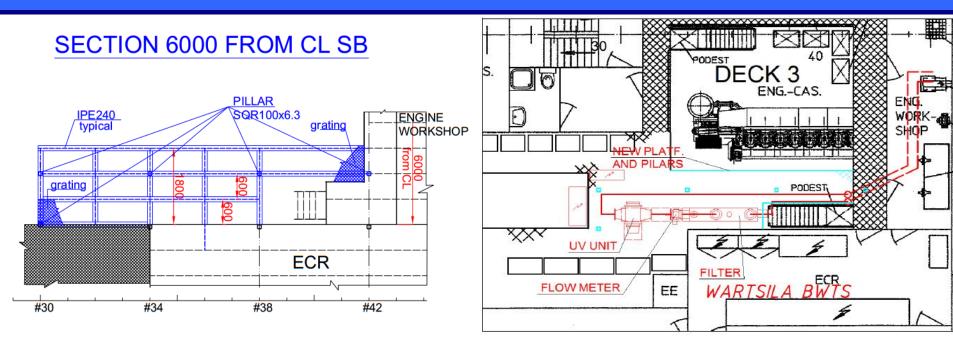
21 of 29

ENTRANCE

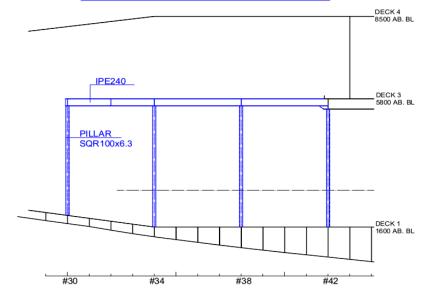
FROM ER

DECK 3

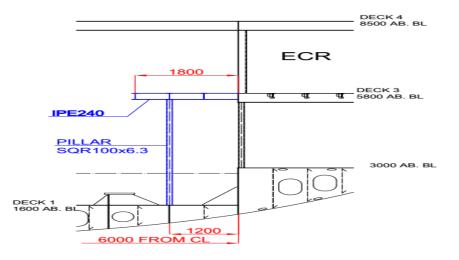
EMship Week, La Spezia, February 2018


BWTS ROOM AS

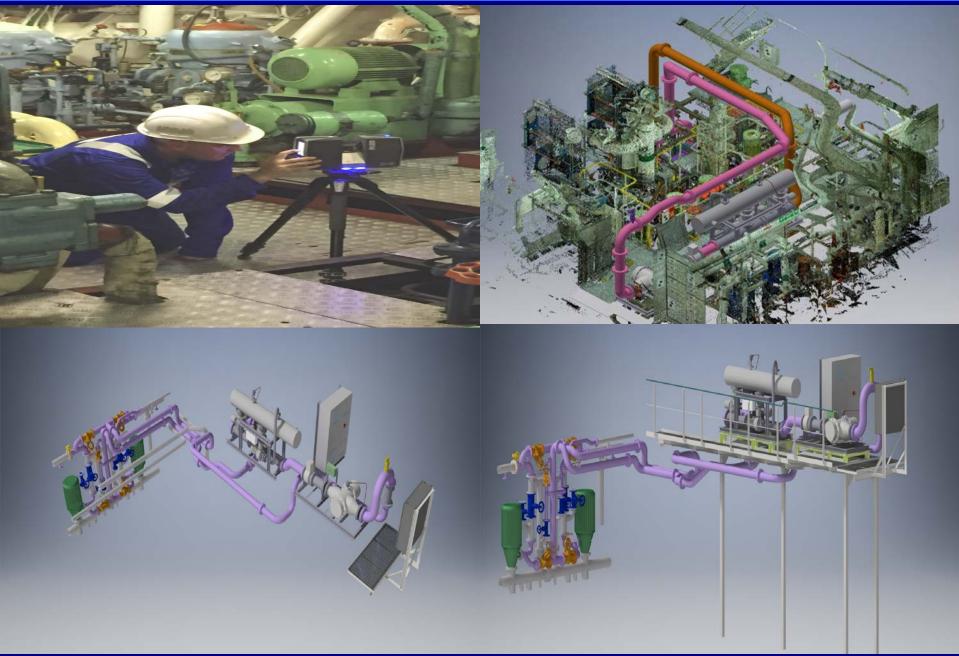
PART OF ER

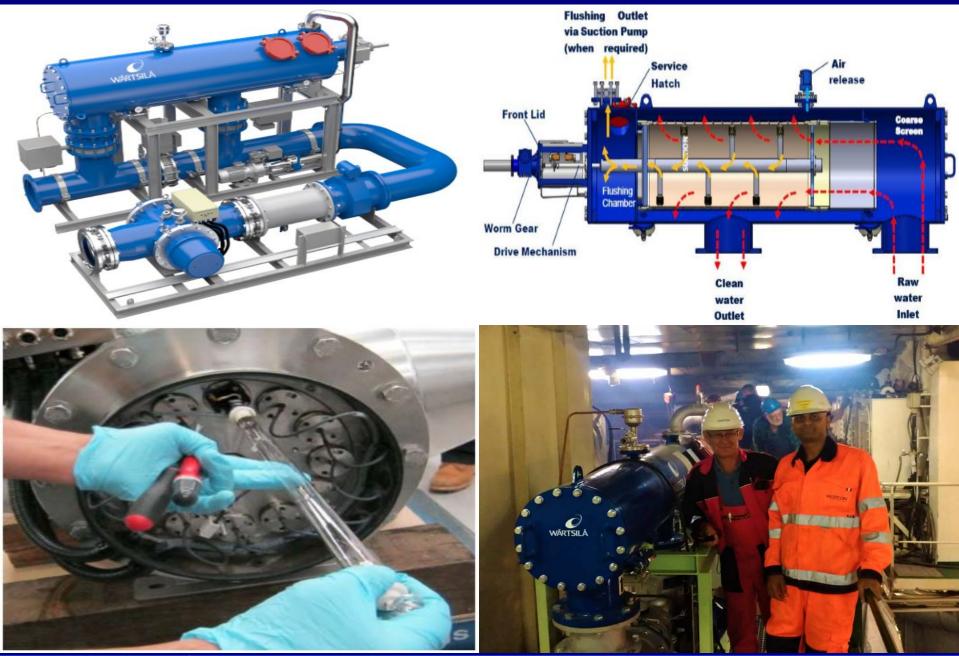

PIPES TO ER

LOOKING AT AFT


CARGO HOLD

SECTION 4800 FROM CL SB




FRAME 38 SB

Rajesh Madusudanan, 7th EMship cycle: 2016 – 2018

22 of 29

Rajesh Madusudanan, 7th EMship cycle: 2016 – 2018

Timeline for turnkey project

Description	Timeline	Responsible Party
Ship Owner Enquiry/Survey of the Vessel/3D Scanning	2-4 weeks	Ship Owner/Design Office
Feasibility Study/Preliminary Design (Concept Design)	1-2 weeks	Design Office
System Selection/Liason with BWTS Manufacturer	1-2 weeks	Ship Owner/Design Office
3D Modeling/Class Approval of Documents	4-8 Weeks	Design Office/Ship Owner
Workshop Documentation	1-2 weeks	Design Office
Selection of Shipyard	1-2 weeks	Ship Owner
Material Purchase	1-2 weeks	Shipyard
Pre-fabrication	2-3 weeks	Shipyard
Installation	2-3 weeks	Shipyard
Commissioning/Trials	1-2 weeks	Shipyard/Ship Owner
Total time required	16-30 weeks (4-7 Months)	

Rajesh Madusudanan, 7th EMship cycle: 2016 – 2018

9. BALLAST WATER COMPLIANCE MONITORING

- IMO Port State Control Inspection
 - Initial inspection
 - Detailed inspection
 - Indicative analysis
 - Detailed analysis
- USCG Inspection AMS, Documents (USCG & EPA/VGP), Contingency measures

Monitoring test kit

- Chelsea Technologies Group: FastBallast (Saudi Aramco ports)
- Aqua tools (SGS & LuminUltra): B-AQUA kit
 - Bioluminescence, ATP-Adenosine Tri-Phosphate

10. CONCLUSIONS

- Alignment of USCG regulations with IMO regulations, Acceptance of MPN method & reduction in approval time by USCG will benefit many treatment system manufacturers.
- Ship owners should not encourage early IOPP renewal survey (de-coupling), undertaking the installation process as early as possible will bring more indirect benefits for the ship owners such as no penalties for non-compliance, creating better image for their clients and raise in the value of the vessel.
- There is no single system which can be an ideal option for all kind of vessels, so the ship owners must pay particular attention to various limitations and their effect on the treatment system while operating in different types of water.
- Retrofitting experience timeline for turnkey project, it is important to select treatment systems which doesn't cause major change to the existing arrangement of ship.

11. RECOMMENDATIONS

- Ship Owners Earlier feasibility study, Tankers in service + Ex-scanning + Dry-docking
- Classification Societies & Ship Owners Discourage de-coupling of IOPP survey,
 Small investment (start) + Very economical (end), Installation Cost + Deadline
- **Treatment System Manufacturers -** Partnership + Turnkey + After-sales service

12. FUTURE PROSPECTS

- **FEA:** Additional structures + Ensure strength and integrity of the installation
- **CFD:** Chemical + ballast water mixing in pipes, Pipe specs + homogeneous mixing
- Sediments: Deadweight Capacity, Restriction of water flow, Higher fuel consumption
- **Multi-objective Optimization:** System selection + Tool development

Thank you!

http://www.wildoceanfilm.com/marketing/images/photos/marinelife/Big%20Ship.jpg

Rajesh Madusudanan, 7th EMship cycle: 2016 – 2018